skip to main content


Search for: All records

Creators/Authors contains: "Ashworth, Matt P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6–133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Since its separation fromStauroneisin 1999, several new species ofCraspedostauroswere discovered in a variety of habitats and geographic locations, adding morphological and phylogenetic data to the investigations of the genus. In a survey of littoral diatoms of Sweden, both on the west and east coasts, two epiphytic stauros-bearing species were encountered and assigned toCraspedostaurosfollowing the characteristic features of this genus, including the possession of a stauros narrower than the central area and cribrate areolae. One species is described as new to science;Craspedostauros lateralissp. nov., and the other is of uncertain identity but bears morphological similarity toC. laevissimus.Caspedostauros lateralisis a marine epiphytic species found in the west coast of Sweden, off Gothenburg city. Based on light and electron microscopy, a detailed description of the morphological and ultrastructural features of these species is given and a comparison of the distinguishing characters with allied species is discussed. Some ecological data and the occurrence of associated species on the host macrophyte are provided.

     
    more » « less
    Free, publicly-accessible full text available January 11, 2025
  3. Exploration of the diversity in the diatom genus Homoeocladia across Micronesia revealed several clusters of undescribed species based on variations around several characters. Using ultrastructural data from scanning electron microscopy, we describe seventeen new species in three of these morphological groups. (1) A group with external thickenings includes eight new species with costae and/or bordered areolae on valve face and/or conopea and/or peri-raphe zone, and one with similar areolae but no ornamentation; this group includes the previously described H. jordanii. (2) Large, linear species, resembling H. asteropeae and H. tarangensis; we describe three new species close to the latter. (3) A sinuous-areolae group includes five new species with areola openings shaped like “~”, “s”, or “z” on the valve and/or girdle bands, or both, and leads to reconsideration of the diagnosis of Homoeocladia schefterae and the recognition that the globally widespread species in this complex is H. coacervata sp. nov. The three groups are based solely on morphology and no genetic relationships are implied within or between the groups, other than having the characteristics of the recently redefined genus Homoeocladia. However, the high diversity of species in Homoeocladia suggests the genus is a good candidate to test for species flocks in this region and in at least one other comparable location, incorporating DNA sampling through either culturing or metabarcoding.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Several automated molecular methods have emerged for distinguishing eukaryote species based on DNA sequence data. However, there are knowledge gaps around which of these single‐locus methods is more accurate for the identification of microalgal species, such as the highly diverse and ecologically relevant diatoms. We applied genetic divergence, Automatic Barcode Gap Discovery for primary species delimitation (ABGD), Assemble Species by Automatic Partitioning (ASAP), Statistical Parsimony Network Analysis (SPNA), Generalized Mixed Yule Coalescent (GMYC) and Poisson Tree Processes (PTP) using partialcox1,rbcL,5.8S + ITS2,ITS1 + 5.8S + ITS2 markers to delineate species and compare to published polyphasic identification data (morphological features, phylogeny and sexual reproductive isolation) to test the resolution of these methods. ASAP, ABGD, SPNA and PTP models resolved species ofEunotia,Seminavis, Nitzschia, SellaphoraandPseudo‐nitzschiacorresponding to previous polyphasic identification, including reproductive isolation studies. In most cases, these models identified diatom species in similar ways, regardless of sequence fragment length. GMYC model presented smallest number of results that agreed with previous published identification. Following the recommendations for proper use of each model presented in the present study, these models can be useful tools to identify cryptic or closely related species of diatoms, even when the datasets have relatively few sequences.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Microalgal cultures are often maintained in xenic conditions, i.e., with associated bacteria, and many studies indicate that these communities both are complex and have significant impacts on the physiology of the target photoautotroph. Here, we investigated the structure and stability of microbiomes associated with a diverse sampling of diatoms during long-term maintenance in serial batch culture. We found that, counter to our initial expectation, evenness diversity increased with time since cultivation, driven by a decrease in dominance by the most abundant taxa in each culture. We also found that the site from which and time at which a culture was initially collected had a stronger impact on microbiome structure than the diatom species; however, some bacterial taxa were commonly present in most cultures despite having widely geographically separated collection sites. Our results support the conclusion that stochastic initial conditions (i.e., the local microbial community at the collection site) are important for the long-term structure of these microbiomes, but deterministic forces such as negative frequency dependence and natural selection exerted by the diatom are also at work. IMPORTANCE Natural microbial communities are extremely complex, with many more species coexisting in the same place than there are different resources to support them. Understanding the forces that allow this high level of diversity has been a central focus of ecological and evolutionary theory for many decades. Here, we used stock cultures of diatoms, which were maintained for years in continuous growth alongside populations of bacteria, as proxies for natural communities. We show that the bacterial communities remained relatively stable for years, and there is evidence that ecological forces worked to stabilize coexistence instead of favoring competition and exclusion. We also show evidence that, despite some important regional differences in bacterial communities, there was a globally present core microbiome potentially selected for in these diatom cultures. Understanding interactions between bacteria and diatoms is important both for basic ecological science and for practical science, such as industrial biofuel production. 
    more » « less